Amt.ac.cn

Robust Inference in Semiparametric Models East China Normal University, Shanghai, China Semiparametric Models for Longitudinal Data Influence Diagnostics of Semiparametric Models 1. Case Deletion and Subject Deletion Analysis Robust Estimation of Semiparametric Models {(xij, tij, yij), i = 1, . . . , m, j = 1, . . . , ni}. yij = XTijβ0 + g(tij) + eij, • β0 ∈ Rp , g is a smooth function , • eij are random errors, and are independent between subjects eij = ZTijbi + Ui(tij) + ij, n = • ni = 1: usually partialy linear model In dependent data ni = 1 1. Speckman (1988),Hardle, Liang and Gao (2000):kernel 2. Heckman (1986), He and Shi (1996), Eubank (1999):spline Longitudinal data and mixed models 1. Zeger and Diggle (1994): application to CD4 2. Moyeed and Diggle (1994): convergence rates 3. Zhang, Lin et al (1998), Lin and Zhang (1999), Ruppert, Wand and Carroll(2003): penalized likelihood 4. Lin and Carroll (2000,2001a,b,2002):GEE 1. Cook and Wesiberg (1982), Wei (1998), Banerjee and Frees (1997), Fung, Zhu, Wei and He (2002):Case Deletion 2. Cook (1986), Lu, Ko and Chang (1997), Lesaffre and Verbeke (1998), Zhu, He and He (2003):Local Influence Influence Diagnostics of Semiparametric Model L(β, g) = l(β, g) g (t)dt = l(β, g) gT Kg l(β, g) = log |V | − (Y − Xβ − N g)T V −1(Y − Xβ − N g), Penalized likelihood estimation H = I − ΣV −1 + ΣV −1 ¯ g N + λK)1N T Wg dcdT Cook distance of parameter β c WxX (X T WxX )1X T Wxdc Partial influence for nonparametric part g DFITij = |dTc N(ˆg(ij) ˆg)|/sij where s2ij is the cth diagonal element of N(0, Ir)C−1(0, Ir)T NT θ = (βT , gT )T , Ei = (0, . . . , In , 0, . . . , 0)T , Testing statistics of outlying subject Ti = ˆeT Ei(In − ¯ CD[i](β) = RTi Hβ,iRi Hβ,i = ETi WxX(XT WxX)1XT WxEi CD[i](g) = RTi WgNS−1NTi (NiS−1NTi )1NiS−1NT WgRi Perturbation penalized likelihood L(θ, ω) θω is the estimate of θ under perturbation F = 2Lθω) Fw = DT e)V −1 ¯ e1, · · · , ˆem) Partial influence matrix for parametric components β Fw(β) = DT e)WxX(XT WxX)1XT WxDe) Partial influence matrix for nonparametric components g Fw(g) = DT e)WgN(NT WgN + λK)1NT WgDe) Fe = DT V −e)V −1 ¯ Fe(g) = DT V −e)WgNS−1NT WgDV −e) Fe(β) = DT V −e)WxX(XT WxX)1XT WxDV −e) e)WgNS−1NT WgDe) e)WxX(XT WxX)1XT WxDe) H1)11, · · · , 1Tm(V −1 Fr(β) = 1TWxX(XT W X)1XW Fr(g) = 1T WgX(XT W X)1XT W Data source Zhang, Lin et al (1998) 34 women in one menstrual cycle, y =log progesterone level, x = age, BMI, t = days within one cycle yij = β1AGEi + β2BMIi + g(tij) + bi + Ui(tij) + ij ρ(yij − xTijβ − g(tij)) = minimum Choice of ρ depends on interest 2. median ρ(r) = |r| ρ(r) = (τ I(r > 0) + (1 − τ )I(r < 0))|r| Choice of smoothing method for g: kernel; local polynomial; π(t) = (B1(t), . . . , BN (t))T Order of polynomials l + 1; Knots: 0 = s0 < s1 · · · < sk = 1 sup |g(t) − αT π(t)| = O(k−r) where r is an order of smoothness of g.
Advantages: Local smoothing but global representation, Good ρ(yij − xTijβ − π(tij)T α) = minimum Let θ = (βT , αT )T and zTij = (xTij, π(tTij))T . The problem is reducedto a linear model problem.
ψ(yij − zTijθ)zij = 0 2. ψ is not everywhere differentiable: Hunter and Lange (2000) View as a model selection problem ij θ. This is a useful information-type criterion for N within a reasonable range If k = kn → ∞ and k/n → 0, the estimate of (βT , g) is If kn ≈ n1/(2r+1), we have ij ) − g(tij ))2 = Op(n−2r/(2r+1)), √nβ − β) → N(0,A−1BA−1) • A and B can be estimated consistently yij = xijβ + cos(πtij) + wi(tij) + ij • tij random sample from U(0, 1), xij = 5t2ij + N(0, 0.5) • wi(t) stationary Gaussian process with γ(t) = 0.4 exp(−η|t|) for ZD-estimator as in Moyeed and Diggle (1994): uses kernel Estimates of βj(j = 1, 2): Non-significance of AGE and BMI in both mean and median

Source: http://www.amt.ac.cn/academic/workshop/workshop7/paper3.pdf

actaortopedica.com.br

Updating article CURRENT CONCEPTS IN OSTEOARTHRITIS Márcia Uchôa de rezende1, GUstavo constantino de caMpos1, alexandre Felício pailo1 AbstrACt is not purely mechanical and / or aging, and clarification of Osteoarthritis (OA), the most common form of joint disease, the inflammatory pathways involved led recently to the clinical affects mainly the hips, knees, hands and feet, leadin

Research studies

Baltimore, MD Bulimia Research Study The Johns Hopkins Eating Disorders Program is seeking women 18-40 years old with bulimia nervosa interested in a research study funded by the Klarman Family Foundation. The study includes a health assessment, blood testing, and pictures of the brain taken using a medical scanner. Eligible women will be paid up to $400 for their participation and will be

Copyright © 2011-2018 Health Abstracts